## **Parabole**

Tangentes, normales, foyer et directrice, enveloppe, développée, lieu de points, tableau de fils, tourniquette, théorèmes de Poncelet, de Pappus-Pascal.

#### Sommaire

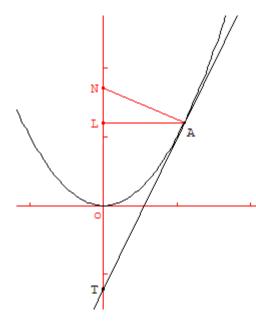
- 1. Méthode de Torricelli
- 2. Sous-normale
- 3. Foyer et directrice
- 4. Cordes et tangentes
- 5. Tourniquette
- 6. Tangente et lieu géométrique
- 7. Parabole et composition de fonctions
- 8. Enveloppe Tableau de fils
- 9. Développée
- 10. Construction pratique
- 11. Lieu de l'orthocentre
- 12. Lieu de points
- 13. Théorèmes de Poncelet
- 14. Théorème de Pappus-Pascal



#### 1. Méthode de Torricelli

Evangelista Torricelli : physicien et géomètre italien (1608-1647) : a connu à l'âge de 20 ans Galilée et sous son influence a étudié le mouvement parabolique des projectiles. Il découvrit la quadrature de la cycloïde en 1638 puis son aire en 1644. Il inventa le baromètre en 1643.

Soit *P* la parabole d'équation  $y = f(x) = k x^2$  dans un repère orthogonal (O,  $\vec{i}$ ,  $\vec{j}$ ). (Dans ce document les figures sont réalisées en prenant k = 1)



Pour tout point A d'abscisse *a* non nulle Torricelli propose la méthode suivante :

- construire le projeté orthogonal L de A sur l'axe des ordonnées,
- construire le symétrique T de L par rapport à O,
- la droite (AT) est la tangente à la parabole P au point A.

La tangente a donc pour équation y = f'(a)x - f(a).

On dit que [LT] est la sous-tangente ; la sous-tangente à la parabole a un milieu fixe : le point O.

## 2. Sous-normale

La perpendiculaire, au point de contact A, à la tangente coupe l'axe des ordonnées en N.

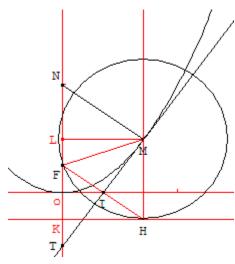
La parallèle à l'axe des abscisses passant par A coupe l'axe des ordonnées en L.

Quelque soit le point A, distinct de O, la sous-normale [LN] a une longueur constante

[LN] est appelé sous-normale. Sa longueur est égale au paramètre

$$p = LN = \frac{1}{2k}$$
 de la parabole d'équation :  $y = k x^2 = \frac{1}{2p} x^2$  (si  $k > 0$ ).

## 3. Foyer et directrice



Etant donné une droite (d) et un point F non situé sur (d). La distance de F à (d) est le paramètre p = FK (où K est la projection orthogonale de F sur d).

Une parabole est l'ensemble P des points équidistants du foyer F et de la directrice (d).

C'est donc l'ensemble des points M tel que MF = MH avec H la projection orthogonale de M sur (d).

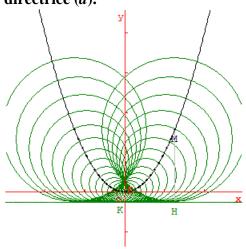
Le point F est appelé le *foyer* de la parabole P et la droite (d) la directrice.

Dans un repère (O, [i], [j]), si le point F a pour coordonnées (0,  $\frac{p}{2}$ )

et la directrice a pour équation  $y = -\frac{p}{2}x$ ,

la parabole *P* a pour équation  $y = \frac{1}{2p}x^2$ .

La parabole P est aussi l'ensemble des centres M des cercles passant par le foyer F et tangents à la directrice (d).



La tangente en M à la parabole est la médiatrice de [FH]. La normale en M coupe l'axe (FK) de la parabole en N.

La sous-normale [LN] a une longueur est égale au paramètre : p = KF = LN.

(MN) est la bissectrice de l'angle FMy.

Un rayon focal issu de F se réfléchi en M sur la parabole et repart parallèlement à l'axe de la parabole, propriété utilisée dans les phares, radars ou antennes ...

## 4. Cordes et tangentes

La tangente à la parabole parallèle à la corde [AB] a pour point de contact le point C dont l'abscisse est la moyennes des abscisse de A et B.

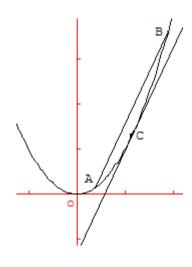
| Point    | A | В | С                   |
|----------|---|---|---------------------|
| Abscisse | а | b | $c = \frac{a+b}{2}$ |

Le coefficient directeur u de (AB) est :

$$u = f'(c) = k (a + b)$$
. {parabole d'équation  $y = k x^2$ }

Soit I le milieu du segment [AB] : la droite (CI) est parallèle à l'axe de la parabole (Oy).

Si le paramètre p est positif, le point C est en-dessous du segment [AB]. La parabole (P) est une courbe convexe.



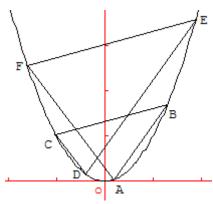
## Cordes parallèles

Soit A, B, D et E quatre points distincts de la parabole P d'équation  $y = k x^2$  d'abscisses respectives a, b, d et e

On peut déduire de la question précédente que la corde [AB] est parallèle à la corde [DE] si et seulement si : a + b = d + e.

(Ces deux cordes sont parallèles à la tangente au point d'abscisse  $\frac{a+b}{2}$ ).

# 5. Tourniquet sur une parabole



On choisit sur la parabole *P* quatre points A, B, C et D d'abscisses respectives *a*, *b*, *c* et *d*.

On construit deux points E et F tels que (DE) // (AB), puis (EF) // (BC). On montre que le tourniquet se referme avec (FA) // (CD).

En effet si e et f sont les abscisses de E et F on a : a + b = d + e car (AB) // (DC), e + f = b + c car (EF) // (BC).

En ajoutant membre à membre les deux égalités et en simplifiant par b + e on trouve :

a + f = c + d ce qui prouve que (FA) // (CD).

#### 6. Corde focale

Dans un repère orthonormé (O,  $\vec{i}$  ,  $\vec{j}$  ), on note P la parabole

représentative de la fonction  $f(x) = \frac{x^2}{4}$ , de paramètre p = 2 et F le foyer

de coordonnées F(0,1).

Une droite ( $\Delta$ ) de coefficient directeur m passe par F et coupe P en A et B d'abscisses  $x_1$  et  $x_2$ .

Les tangentes à la parabole *P* en A et B se coupent en I.

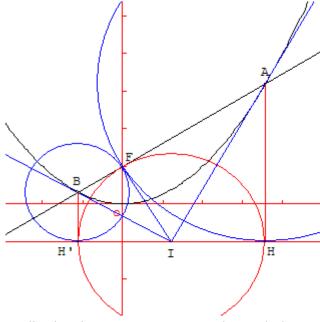
Objectif: trouver le lieu géométrique du point I lorsque la droite ( $\Delta$ ) pivote autour de F.



## Démonstration « analytique »

- Montrer que la droite ( $\Delta$ ) a pour équation y = mx + 1.
- Vérifier que  $x_1$  et  $x_2$  sont les deux solutions distinctes de l'équation du second degré :  $x^2 4 m x 4 = 0$ .
- Ecrire en fonction de  $x_1$  l'équation de la tangente en A à la parabole P et en fonction de  $x_2$  l'équation de la tangente en B.
- Montrer que ces deux tangentes sont sécantes au point I de coordonnées : .
- Trouver les coordonnées de I en fonction de *m* et vérifier que I est un point de la directrice d'équation *y* = -1.

Démonstration en « géométrie pure »



P est une parabole de foyer F et de directrice (d).

Soit ( $\Delta$ ) une droite passant par F distincte de Oy.

Analyse: si A est un point de la parabole situé sur la droite ( $\Delta$ ), ce point équidistant de F et de (d) est le centre d'un cercle passant par F et tangent à (d). La normale à  $\Delta$  passant par F est tangente à ce cercle. Cette normale coupe la directrice en I. les demi-droites [IH) et [IF) sont les deux tangentes au cercle issues de I, les segments sont égaux: IF = IH. Le point H est sur le cercle de centre I passant par F.

Synthèse: la normale à ( $\Delta$ ) passant par F coupe la directrice en I. Le cercle de centre I passant par F coupe la directrice en deux points H et H'. Les normales à (d) passant par H et H' coupent ( $\Delta$ ) en deux points A et B. AH = AF donc A est sur la parabole P et (AI),

médiatrice de [FH] est tangente à la parabole. De même (BI) médiatrice de [FH'] est l'autre tangente à la parabole.

[AB] est une **corde focale** de la parabole P. Les tangentes en A et B se coupent sur la directrice. Ces deux tangentes sont les bissectrices en I des droites (d) et (IF); elles sont donc orthogonales.

| Dorohala at tangantas | Dogo 4/11 | E-in-1                                      |
|-----------------------|-----------|---------------------------------------------|
| Parabole et tangentes | Page 4/11 | Faire des mathématiques avec Cabri-géomètre |

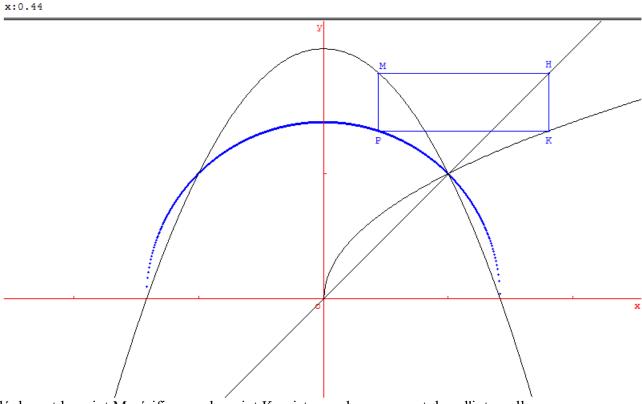
### 7. Parabole et composition de fonctions

f est la fonction définie sur  $[0, +\infty]$  par  $f(x) = \sqrt{x}$  et g la fonction définie sur R par par  $g(x) = 2 - x^2$ .

M est un point d'abscisse x de (P), représentation graphique de g; H est le point de la droite (d) d'équation y = x ayant la même ordonnée que M.

Lorsque la construction est possible, on note K le point de la courbe (C), représentation graphique de f, ayant la même abscisse que H.

P est le quatrième sommet du rectangle MHKP.



En déplaçant le point M vérifier que le point K existe que lorsque x est dans l'intervalle  $I = [-\sqrt{2}; \sqrt{2}]$ . Ce point K appartient à l'arc des points de la courbe (C) dont les abscisses sont inférieures à 2.

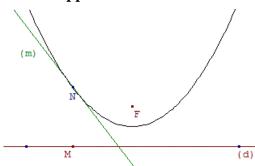
Les coordonnées des sommets du rectangle sont  $M(x, 2-x^2)$ ;  $H(2-x^2, 2-x^2)$ ;  $K(2-x^2, \sqrt{2-x^2})$  et  $P(x, \sqrt{2-x^2})$ .

 $OP^2 = 2$ . L'ensemble des points P, d'ordonnées positives, est le demi cercle de centre O est de rayon  $\sqrt{2}$ .

La fonction k définie sur I, qui à x associe l'ordonnée de P, est la fonction composée  $k = f \circ g$ .

| Parabole et tangentes | Page <b>5/11</b> | Faire des mathématiques avec Cabri-géomètre |
|-----------------------|------------------|---------------------------------------------|

## 8. Enveloppe



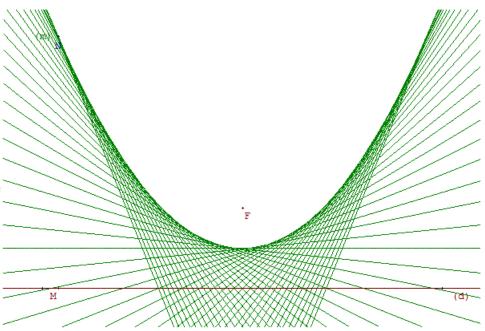
Soit un point F et une droite (*d*) étant considérés comme fixes, un point M variable sur (*d*) et (*m*) la médiatrice de [FM].

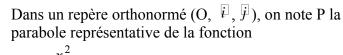
L'objectif est de déterminer l'enveloppe de la famille des médiatrices (*m*) obtenues lorsque le point M varie sur la droite (*d*).

#### Tableau de fils

La réalisation de tableaux de fils et clous est maintenant un classique des travaux manuels.

Nous allons à l'aide de GéoPlan la simuler pour obtenir une parabole en réalisant un réseau de tangentes où les segments représentent des fils tendus entre deux clous.

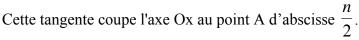




$$f(x) = \frac{x^2}{4}$$
 étudiée sur l'intervalle [-10,10].

Comme nous l'avons vu au paragraphe 1. la méthode de Toricelli montre que la tangente au point d'abscisse n a pour équation

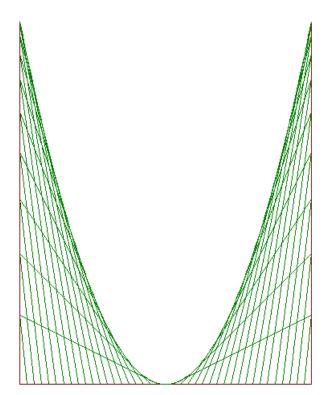
$$y = f'(n) x - f(n).$$



La tangente coupe, si n > 0, la droite verticale d'équation x = 10 au point B d'ordonnée

$$10 f'(n) - f(n) = 10 \frac{n}{2} - \frac{n^2}{4},$$

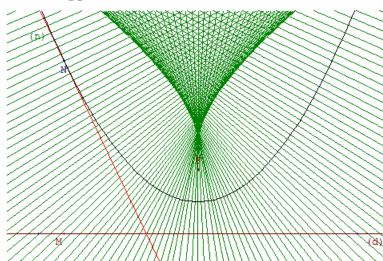
ou si n < 0, la droite verticale d'équation x = -10 au point B d'ordonnée : -10 f'(n) - f(n).



Le mode trace permet de dessiner 41 segments à partir de "points A" régulièrement répartis sur le bord horizontal et, sur chaque bord vertical, de 10 autres points B dont les ordonnées calculées ci-dessus sont :

| 4,75 | 9 | 12,75 | 16 | 18,75 | 21 | 22,75 | 24 | 24,75 | 25 |
|------|---|-------|----|-------|----|-------|----|-------|----|

## 9. Développée



Soit un point F et une droite (*d*) étant considérés comme fixes, foyer et directrice d'une parabole, un point M variable sur (*d*) et (*t*) la médiatrice de [FM] tangente en N à la parabole.

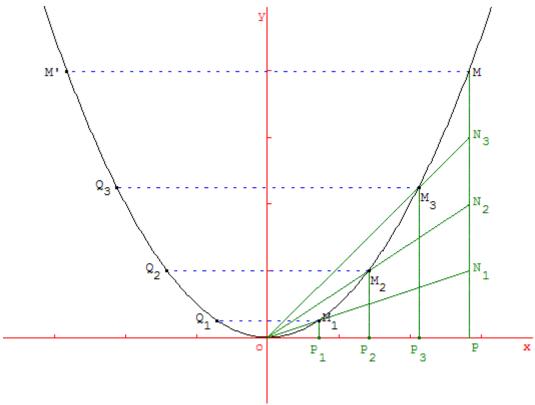
Au point N, traçons la normale à la parabole, perpendiculaire à (t).

L'objectif est de déterminer l'enveloppe de la famille des médiatrices (n) obtenues lorsque le point M varie sur la droite (d).

La courbe obtenue est la développée de la parabole.

### 10. Construction pratique

Construire point par point une parabole dont on connaît le sommet, l'axe de symétrie et un point.



A partir d'un point M de la courbe ayant pour projection P sur la tangente au sommet on partage les segments [OP] et [PM] en quatre parties égales. Les points  $M_1$ ,  $M_2$ ,  $M_3$  construits ci-contre sont situés sur la parabole et on complète avec les symétriques.

Si la parabole a pour équation  $y = k x^2$ , soit pour M : MP =  $k OP^2$ ,

on en déduit que par exemple que pour  $M_3(x,y)$  on a  $x = OP_3 = \frac{3}{4}OP$ ,

| Parabole et tangentes  | Page <b>7/11</b> | Faire des mathématiques avec Cabri-géomètre |
|------------------------|------------------|---------------------------------------------|
| Turusore et turigentes | 1 450 1/11       | Tune des mamemandes avec euch geometre      |

et 
$$y = P_3M_3 = \frac{3}{4}PN_3 = \frac{3}{4} \times \frac{3}{4}MP = \left(\frac{3}{4}\right)^2 k OP^2 = k \left(\frac{3}{4}OP\right)^2 = k OP_3^2 = k x^2 \text{ vérifie l'équation.}$$

La construction peut aussi se faire à partir d'un des points  $M_1$ ,  $M_2$  ou  $M_3$  pour trouver des points de la parabole au delà du point connu.

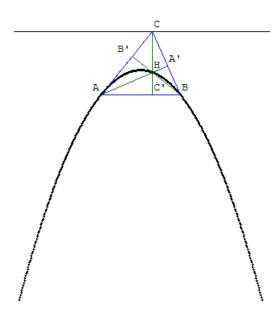
Cette méthode est valable pour d'autres partages des segments [OP] et [PM] en parties égales.

### 11. Lieu de points

Recherche du lieu de l'orthocentre d'un triangle lorsque l'un des sommets se déplace sur une droite.

a. La droite est parallèle au côté opposé à ce sommet.

Si (d) est une droite parallèle à (AB), distincte de (AB), le lieu de l'orthocentre H quand le sommet C parcourt la droite (d) est une courbe passant par A et B et cette courbe est symétrique par rapport à la médiatrice de [AB]. On va montrer que c'est une parabole.



En géométrie analytique utilisons un repère (O,  $\dot{i}$ ,  $\dot{j}$ ) centré en O milieu de [AB] tel que  $\dot{i} = \stackrel{\rightarrow}{OB}$  et que  $\dot{j}$  soit un vecteur directeur de la médiatrice de [AB].

Les coordonnés des points sont alors A(-1, 0) ; B(1, 0) ; C(x,  $\gamma$ ) et H(x, y) car H étant l'orthocentre de ABC, C et H ont même abscisse x.

AH étant orthogonal à CB, on a le produit scalaire nul:

$$\overrightarrow{AH} \cdot \overrightarrow{CB} = 0$$

Les coordonnées des vecteurs sont  $\overrightarrow{AH}$  (1 + x, y).;

$$\stackrel{\rightarrow}{\operatorname{CB}} (1 - x, -\gamma).$$

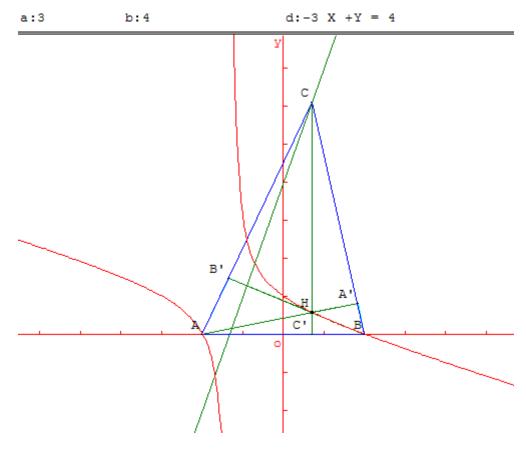
On obtient finalement avec la formule analytique du produit scalaire :

$$XX' + YY' = (1 + x) (1 - x) - \gamma y = 0.$$

$$y = \frac{1}{\gamma}(-x^2 + 1) \qquad \qquad \gamma \neq 0.$$

Cette équation prouve que H se déplace sur une parabole passant par A et B et même que le lieu de H est toute la parabole, étant donné que x décrit **R**.

*Réciproquement* comme l'orthocentre du triangle ABH est le point C on peut monter que si C se déplace sur une parabole passant par A et B, d'axe de symétrie la médiatrice de [AB], alors le lieu de l'orthocentre est une droite parallèle à (AB).



Dans le repère du paragraphe a précédent le point C se déplace sur une droite (d) d'équation :

$$y = \alpha x + \beta$$
 avec  $\alpha \neq 0$  et  $\beta \neq 0$ .

Il a donc pour coordonnées  $C(x, \alpha x + \beta)$ . Les coordonnées des autres points sont toujours A(-1, 0); B(1, 0) et H(x, y).

Les coordonnées des vecteurs sont :  $\overrightarrow{AH}$  (1 + x, y).;  $\overrightarrow{CB}$  (1 - x, - ( $\alpha x$  +  $\beta$ ) ).

On obtient finalement avec la formule analytique du produit scalaire  $\overset{\rightarrow}{AH}$  .  $\overset{\rightarrow}{CB}$   $\ nul$  :

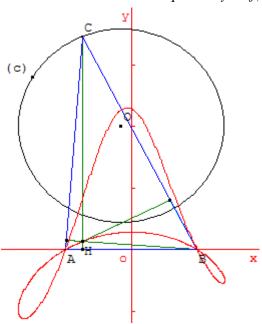
$$(1+x)(1-x) - y(\alpha x + \beta) = 0.$$

Soit

$$y = \frac{-x^2 + 1}{\alpha x + \beta}.$$

On obtient une hyperbole?

c. C décrit une courbe d'équation y = f(x)



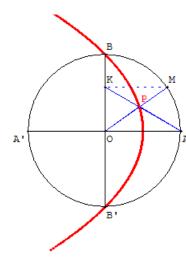
Jean Fages fait remarquer que les calculs réalisés au-dessus permettent d'affirmer que le lieu de H est la courbe d'équation

$$y = \frac{-x^2 + 1}{f(x)}$$

Exemple : C sur un cercle.

Bibliographie: Faisons bouger les centres Jean Fages - bulletin APMEP n° 405.

# 12. Lieu de points

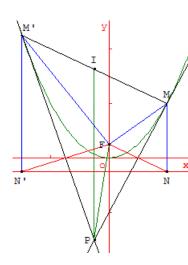


Soit un cercle (*C*) fixe de centre O, deux diamètres perpendiculaires [AA'] et [BB'] et M un point qui décrit le cercle sauf les points A et A'.

On projette orthogonalement le point M sur le segment [BB'] en K et on appelle P le point d'intersection des droites (OM) et (AK).

Montrer que le lieu du point P est la parabole de foyer O et directrice (d), tangente au cercle en A, privée de son sommet.

# 13. Théorèmes de Poncelet



M et M' sont deux points de la parabole.

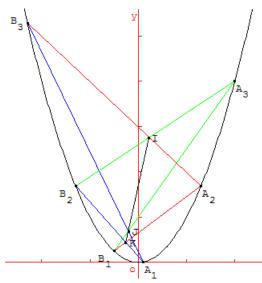
Les tangentes en M et M' à la parabole se rencontrent en P.

Si I est le milieu de [MM'], la droite (PI) est parallèle à l'axe de la parabole.

Premier théorème de Poncelet : (FP) est la bissectrice de l'angle MFM'.

Deuxième théorème de Poncelet : les angles FPM et IPM' sont égaux.

# 14. Théorème de Pappus-Pascal



On choisit sur une parabole six points  $A_1$ ,  $A_2$ ,  $A_3$  et  $B_1$ ,  $B_2$ ,  $B_3$  d'abscisses respectives  $a_1$ ,  $a_2$ ,  $a_3$  et  $b_1$ ,  $b_2$ ,  $b_3$ .

Les droites  $(A_2B_3)$  et  $(A_3B_2)$  se coupent en I, les droites  $(A_1B_3)$  et  $(A_3B_1)$  se coupent en J, les droites  $(A_1B_2)$  et  $(A_2B_1)$  se coupent en K.

Les points I, J, K sont alignés.